3.47 Al principio de cualquier día la cantidad de queroseno que contiene un tanque, en miles de litros, es una cantidad aleatoria Y, de la que durante el día se vende una cantidad aleatoria X. Suponga que el tanque no se reabastece durante el día, de manera que x ≤ y, e imagine también que la función de densidad conjunta de estas variables es (x, y) = 2, 0 < x ≤ y < 1, 0, en otro caso. a) Determine si X y Y son independientes. b) Calcule P(1/4 < X < 1/2 |Y =3/4).

 3.47 Al principio de cualquier día la cantidad de queroseno que contiene un tanque, en miles de litros, es una cantidad aleatoria Y, de la que durante el día se vende una cantidad aleatoria X. Suponga que el tanque no se reabastece durante el día, de manera que x ≤ y, e imagine también que la función de densidad conjunta de estas variables es  (x, y) = 2, 0 < x ≤ y < 1, 0, en otro caso. a) Determine si X y Y son independientes. b) Calcule P(1/4 < X < 1/2 |Y =3/4).


Publicar un comentario

Alguna duda?
Déjalo en los comentarios

Artículo Anterior Artículo Siguiente
Solución no disponible o no se encuentra tu ejercicio en nuestra página? Compra la solución del problema paso a paso desde 2.5 USD (dólares), 8.000 pesos colombianos o el equivalente en su moneda. Solicítalo preferiblemente por WhatsApp : +526567712411 o al correo fismatutor@gmail.com 


Nota: El servicio de resolución de ejercicios NO es gratuito.


Ofrecemos apoyo en tus exámenes, quizes o trabajos en física general, matemáticas, cálculo, entre otras áreas. Para mayor información entra en el siguiente Link



ESCRÍBANOS, NUESTRO TIEMPO DE RESPUESTA ES CASI INMEDIATA LAS 24/7

ULTIMOS COMENTARIOS