Solucionario Fisica Universitaria zemansky capitulo 5







Sección 5.1:Aplicación de la primera ley de newton:partículas en equilibrio


5.1 Dos pesos de 25.0 N cuelgan de los extremos opuestos de una cuerda que pasa por una polea ligera sin fricción. La polea está sujeta a una cadena fijada en el techo. a) ¿Qué tensión hay en la cuerda? b) ¿Qué tensión hay en la cadena?

Solución

5.2 . En la figura 5.41, los bloques suspendidos de la cuerda tienen ambos peso w. Las poleas no tienen fricción y el peso de las cuerdas es despreciable. En cada caso, calcule la tensión T en la cuerda en términos del peso w. En cada caso, incluya el(los) diagrama(s) de cuerpo libre que usó para obtener la respuesta.

Solución

5.3  Una bola para demolición de 75.0 kg cuelga de una cadena uniforme de uso pesado, cuya masa es de 26.0 kg. a) Calcule las tensiones máxima y mínima en la cadena. b) ¿Cuál es la tensión en un punto a tres cuartos de distancia hacia arriba desde la parte inferior de la cadena?

Solución

5.4  Un arqueólogo audaz cruza, mano sobre mano, de un risco a otro colgado de una cuerda estirada entre los riscos. Se detiene a la mitad para descansar (figura 5.42). La cuerda se romperá si su tensión excede \(2.50x10^4 N\), y la masa de nuestro héroe es de 90.0 kg. a) Si el ángulo u es 10.0°, calcule la tensión en la cuerda. b) ¿Qué valor mínimo puede tener u sin que se rompa la cuerda?

Solución

5.5  Un cuadro colgado en una pared pende de dos alambres sujetos a sus esquinas superiores. Si los alambres forman el mismo ángulo con la vertical, ¿cuánto medirá el ángulo si la tensión en los alambres es igual a 0.75 del peso del cuadro? (Ignore la fricción entre la pared y el cuadro.)


Solución

5.7  En San Francisco hay calles que forman un ángulo de 17.58 con la horizontal. ¿Qué fuerza paralela a la calle se requiere para impedir que un Corvette 1967 con masa de 1390 kg ruede cuesta abajo en una calle así?


Solución

5.8  Una gran bola para demolición está sujeta por dos cables de acero ligeros (figura 5.43). Si su masa m es de 4090 kg, calcule a) la tensión \(T_B\) en el cable que forma un ángulo de 40° con la vertical. b) Calcule la tensión \(T_A\) en el cable horizontal.



Solución

5.9  Calcule la tensión en cada cordón de la figura 5.44 si el peso del objeto suspendido es w.



Solución

5.10  . Sobre una rampa muy lisa (sin fricción), un automóvil de 1130 kg se mantiene en su lugar con un cable ligero, como se muestra en la figura 5.45. El cable forma un ángulo de 31.0° por arriba de la superficie de la rampa, y la rampa misma se eleva a 25.0° por arriba de la horizontal. a) Dibuje un diagrama de cuerpo libre para el auto. b) Obtenga la tensión en el cable. c) ¿Qué tan fuerte empuja la superficie de la rampa al auto?


Solución

5.11  Un hombre empuja un piano de 180 kg de masa para que baje deslizándose con velocidad constante, por una rampa inclinada 11.0° sobre la horizontal. Ignore la fricción que actúa sobre el piano. Calcule la magnitud de la fuerza aplicada por el hombre si él empuja a) paralelo a la rampa y b) paralelo al piso.


Solución


5.13  Una esfera uniforme sólida de 45.0 kg, cuyo diámetro es de 32.0 cm, se apoya contra una pared vertical sin fricción, usando un alambre delgado de 30.0 cm con masa despreciable, como se indica en la figura 5.47. a) Elabore el diagrama de cuerpo libre para la esfera y úselo para determinar la tensión en el alambre. b) ¿Qué tan fuerte empuja la esfera a la pared?



Solución

5.14   Dos bloques, ambos con peso w, están sostenidos en un plano inclinado sin fricción (figura 5.48). En términos de w y del ángulo a del plano inclinado, calcule la tensión en a) la cuerda que conecta los bloques y b) la cuerda que conecta el bloque A con la pared. c) Calcule la magnitud de la fuerza que el plano inclinado ejerce sobre cada bloque.



Solución

5.15 Un alambre horizontal sostiene una esfera uniforme sólida de masa m, sobre una rampa inclinada que se eleva 35.0° por arriba de la horizontal. La superficie de la rampa es perfectamente lisa, y el alambre se coloca en el centro de la esfera, como se indica en la figura 5.49. a) Elabore el diagrama de cuerpo libre para la esfera. b) ¿Qué tan fuerte la superficie de la rampa empuja a la esfera? ¿Cuál es la tensión en el alambre?



Solución


Sección 5.2:Aplicación de la primera ley de newton: dinámica de partículas

5.16  Un cohete de 125 kg (incluyendo todo su contenido) tiene un motor que produce una fuerza vertical constante (el empuje) de 1720 N. Dentro de este cohete, una fuente de energía eléctrica de 15.5 N descansa sobre el piso. a) Obtenga la aceleración del cohete. b) Cuando éste ha alcanzado una altitud de 120 m, ¿con qué fuerza el piso empuja la fuente de energía? (Sugerencia: empiece con un diagrama de cuerpo libre para la fuente de energía eléctrica.)



Solución


5.18 Se tira horizontalmente de tres trineos sobre hielo horizontal sin fricción, usando cuerdas horizontales (figura 5.50). El tirón es horizontal y de 125 N de magnitud. Obtenga a) la aceleración del sistema, y b) la tensión en las cuerdas A y B.



Solución

5.19 Máquina de Atwood. Una carga de 15.0 kg de ladrillos pende del extremo de una cuerda que pasa por una polea pequeña sin fricción y tiene un contrapeso de 28.0 kg en el otro extremo (figura 5.51). El sistema se libera del reposo. a) Dibuje un diagrama de cuerpo libre para la carga de ladrillos y otro para el contrapeso. b) ¿Qué magnitud tiene la aceleración hacia arriba de la carga de ladrillos? c) ¿Qué tensión hay en la cuerda mientras la carga se mueve? Compare esa tensión con el peso de la carga de ladillos y con el del contrapeso



Solución

5.20  Un bloque de hielo de 8.00 kg, liberado del reposo en la parte superior de una rampa sin fricción de 1.50 m de longitud, se desliza hacia abajo y alcanza una rapidez de 2.50 m/s en la base de la rampa. a) ¿Qué ángulo forma la rampa con la horizontal? b) ¿Cuál sería la rapidez del hielo en la base de la rampa, si al movimiento se opusiera una fuerza de fricción constante de 10.0 N paralela a la superficie de la rampa?

Solución

5.22  Diseño de pistas de aterrizaje. Un avión de carga despega de un campo horizontal remolcando dos planeadores de 700 kg cada uno. Podemos suponer que la resistencia total (arrastre del aire más fricción con la pista) que actúa sobre cada uno es constante e igual a 2500 N. La tensión en la cuerda de remolque entre el avión y el primer planeador no debe exceder de 12,000 N. a) Si se requiere una rapidez de 40 m/s para despegar, ¿qué longitud mínima debe tener la pista? b) ¿Qué tensión hay en la cuerda de remolque entre los dos planeadores durante la aceleración para el despegue?

Solución

5.23  Una enorme roca de 750 kg se levanta desde una cantera de 125 m de profundidad usando una cadena larga y uniforme cuya masa es de 575 kg. Esta cadena tiene resistencia uniforme, pero en cualquier punto puede soportar una tensión máxima no mayor que 2.50 veces su peso sin romperse. a) ¿Cuál es la aceleración máxima que la roca puede tener para lograr salir de la cantera, y b) ¿cuánto tiempo le toma al ser levantada a aceleración máxima partiendo del reposo?


Solución

5.25  Una estudiante de física que juega con una mesa de hockey de aire (sin fricción) observa que, si imparte al disco una velocidad de 3.80 m/s a lo largo de la mesa, de 1.75 m, al llegar el disco al otro lado se ha desviado 2.50 cm a la derecha, pero aún con una componente de velocidad longitudinal de 3.80 m/s. Ella concluye, atinadamente, que la mesa no está nivelada y calcula correctamente su inclinación a partir de la información mencionada. ¿Cuál es el ángulo de inclinación?


Solución


Sección 5.3: Fuerzas de fricción



5.27 Diagramas de cuerpo libre. Los primeros dos pasos para resolver problemas de la segunda ley de Newton consisten en elegir un objeto para su análisis y luego dibujar su diagrama de cuerpo libre. Haga esto en cada una de las siguientes situaciones: a) una masa M se desliza hacia abajo por un plano inclinado sin fricción con ángulo a; y b) una masa M se desliza hacia arriba por un plano inclinado sin fricción con ángulo a; c) una masa M se desliza hacia arriba por un plano inclinado con fricción cinética con ángulo \(\alpha\).


Solución

5.28 En un experimento de laboratorio acerca de la fricción, un bloque de 135 N que descansa sobre una mesa horizontal áspera se jala con un cable horizontal. El tirón aumenta gradualmente hasta que el bloque empieza a moverse y continúa aumentando a partir de entonces. La figura 5.52 muestra una gráfica de la fuerza de fricción sobre este bloque en función del tirón. a) Identifique las regiones de la gráfica donde hay fricción estática y fricción cinética. b) Calcule los coeficientes de fricción estática y cinética entre el bloque y la mesa. c) ¿Por qué la gráfica se inclina hacia arriba en la primera parte pero luego se nivela? d) ¿Cómo se vería la gráfica si se colocara un ladrillo de 135 N sobre el bloque, y cuáles serían los coeficientes de fricción en ese caso?


Solución


Publicar un comentario

Alguna duda?
Déjalo en los comentarios

Artículo Anterior Artículo Siguiente
Solución no disponible o no se encuentra tu ejercicio en nuestra página? Compra la solución del problema paso a paso desde 2.5 USD (dólares), 8.000 pesos colombianos o el equivalente en su moneda. Solicítalo preferiblemente por WhatsApp : +526567712411 o al correo fismatutor@gmail.com 


Nota: El servicio de resolución de ejercicios NO es gratuito.


Ofrecemos apoyo en tus exámenes, quizes o trabajos en física general, matemáticas, cálculo, entre otras áreas. Para mayor información entra en el siguiente Link



ESCRÍBANOS, NUESTRO TIEMPO DE RESPUESTA ES CASI INMEDIATA LAS 24/7

ULTIMOS COMENTARIOS