Sección 3.1:vectores de posición y velocidad
3.1 Una ardilla tiene coordenadas x y y (1.1 m, 3.4 m) en t1 = 0 y coordenadas (5.3 m, 20.5 m) en t2 = 3.0 s. Para este intervalo, obtenga a) las componentes de la velocidad media, y b) la magnitud y dirección de esta velocidad.
Solución
3.2. Un rinoceronte está en el origen de las coordenadas en t1 =0. Para el intervalo de t1=0 a t2 = 12.0 s, la velocidad media del animal tiene componente x de 23.8 m/s y componente y de 4.9 m/s. En t2 = 12.0 s, a) ¿qué coordenadas x y y tiene el rinoceronte? b) ¿Qué tan lejos está del origen?
3.18. Una pistola que dispara una luz bengala le imprime una velocidad inicial de 125 m/s en un ángulo de 55.0° sobre la horizontal. Ignore la resistencia del aire. Si la bengala se dispara, obtenga su altura máxima y la distancia del punto de disparo al punto de caída, a) en los salares planos de Utah y b) en el Mar de la Tranquilidad en la Luna, donde g =1.67 m/s²
3.19. Un pelotero de grandes ligas batea una pelota de modo que sale del bate con una rapidez de 30.0 m/s y un ángulo de 36.9° sobre la horizontal. Ignore la resistencia del aire. a) ¿En cuáles dos instantes la pelota estuvo a 10.0 m sobre el punto en que se salió del bate? b) Obtenga las componentes horizontal y vertical de la velocidad de la pelota en cada uno de los dos instantes calculados en el inciso a). c) ¿Qué magnitud y dirección tenía la velocidad de la pelota al regresar al nivel en el que se bateó?
3.20. Un atleta lanza la bala a cierta distancia sobre el suelo plano con velocidad de 12.0 m/s, 51.0° sobre la horizontal. La bola golpea el suelo 2.08 s después. Ignore la resistencia del aire. a) ¿Cuáles son las componentes de la aceleración de la bala en vuelo? b) ¿Cuáles son las componentes de la velocidad de la bala al principio y el final de su trayectoria? c) A qué distancia horizontal llegó la bala? d) ¿Por qué la expresión para R del ejemplo 3.8 no da la respuesta correcta para el inciso c)? e) ¿A qué altura sobre el suelo se lanzó la bala? f) Dibuje las gráficas x-t, y-t, vx-t y vy-t para el movimiento
3.22. Suponga que el ángulo inicial \alpha de la figura 3.26 es de 42.0° y la distancia d es de 3.00 m. ¿Dónde se encontrarán el dardo y el mono, si la rapidez inicial del dardo es a) 12.0 m/s? b) ¿8.0 m/s? c) ¿Qué sucederá si la rapidez inicial del dardo es de 4.0 m/s? Dibuje la trayectoria en cada caso.
Solución
3.23. Un hombre está parado en la azotea de un edificio de 15.0 m y lanza una piedra con velocidad de 30.0 m/s en un ángulo de 33.0° sobre la horizontal. Puede despreciarse la resistencia del aire. Calcule a) la altura máxima que alcanza la piedra sobre la azotea; b) la magnitud de la velocidad de la piedra justo antes de golpear el suelo; y c) la distancia horizontal desde la base del edificio hasta el punto donde la roca golpea el suelo.
Solución
3.24. Los bomberos están lanzando un chorro de agua a un edificio en llamas, utilizando una manguera de alta presión que imprime al agua una rapidez de 25.0 m/s al salir por la boquilla. Una vez que sale de la manguera, el agua se mueve con movimiento de proyectil. Los bomberos ajustan el ángulo de elevación de la manguera hasta que el agua tarda 3.00 s en llegar a un edificio que está a 45.0 m de distancia. Ignore la resistencia del aire y suponga que la boquilla de la manguera está a nivel del suelo. a) Calcule el ángulo de elevación de a. b) Determine la rapidez y aceleración del agua en el punto más alto de su trayectoria. c) ¿A qué altura sobre el suelo incide el agua sobre el edificio, y con qué rapidez lo hace?
Solución