3.40 Un restaurante de comida rápida opera tanto en un local que da servicio en el automóvil, como en un local que atiende a los clientes que llegan caminando. En un día elegido al azar, represente las proporciones de tiempo que el primero y el segundo local están en servicio con X y Y, respectivamente, y suponga que la función de densidad conjunta de estas variables aleatorias es f (x, y) = 2/3 (x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0, en otro caso. a) Calcule la densidad marginal de X. b) Calcule la densidad marginal de Y. c)

 3.40 Un restaurante de comida rápida opera tanto en un local que da servicio en el automóvil, como en un local que atiende a los clientes que llegan caminando. En un día elegido al azar, represente las proporciones de tiempo que el primero y el segundo local están en servicio con X y Y, respectivamente, y suponga que la función de densidad conjunta de estas variables aleatorias es f (x, y) = 2/3 (x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0, en otro caso. a) Calcule la densidad marginal de X. b) Calcule la densidad marginal de Y. c) Calcule la probabilidad de que el local que da servicio a los clientes que llegan en automóvil esté lleno menos de la mitad del tiempo

Publicar un comentario

Alguna duda?
Déjalo en los comentarios

Artículo Anterior Artículo Siguiente
Solución no disponible o no se encuentra tu ejercicio en nuestra página? Compra la solución del problema paso a paso desde 2.5 USD (dólares), 8.000 pesos colombianos o el equivalente en su moneda. Solicítalo preferiblemente por WhatsApp : +526567712411 o al correo fismatutor@gmail.com 


Nota: El servicio de resolución de ejercicios NO es gratuito.


Ofrecemos apoyo en tus exámenes, quizes o trabajos en física general, matemáticas, cálculo, entre otras áreas. Para mayor información entra en el siguiente Link



ESCRÍBANOS, NUESTRO TIEMPO DE RESPUESTA ES CASI INMEDIATA LAS 24/7

ULTIMOS COMENTARIOS